
68 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

contributed articles
DOI:10.1145/2856103

Satisfiability modulo theory solvers can
help automate the search for the root cause
of observable software errors.

BY ABHIK ROYCHOUDHURY AND SATISH CHANDRA

PROGRAMMING, THOUGH A creative activity, poses
strict demands on its human practitioners in terms
of precision, and even talented programmers make
mistakes. The effect of a mistake can manifest in
several ways—as a program crash, data corruption, or
unexpected output. Debugging is the task of locating the
root cause of an error from its observable manifestation.
It is a challenge because the manifestation of an error
might become observable in a program’s execution
much later than the point at which the error infected
the program state in the first place. Stories abound of
heroic efforts required to fix problems that cropped up
unexpectedly in software that was previously considered
to be working and dependable.

Given the importance of efficient debugging in overall
software productivity, computer-assisted techniques

for debugging are an active topic of
research. The premise of such tech-
niques is to employ plentiful com-
pute cycles to automatically narrow
the scope of where in the source code
the root cause is likely to be, thereby
reducing the amount of time a pro-
grammer must spend on debugging.
Such computer-assisted debugging
techniques, as discussed in this ar-
ticle, do not promise to pinpoint the
mistake in a program but only to nar-
row the scope of where the mistake
might lurk. Such techniques are also
sometimes called “fault localization”
in the software-engineering literature.

We now proceed to review the ma-
jor advances in computer-assisted de-
bugging and describe one of the ma-
jor challenges in debugging—lack of
specifications capturing the intended
behavior of the program; that is, if the
intended behavior of the program is
not available, how can a debugging
method infer where the program went
“wrong”? We next present a motivating
example extracted from Address Reso-
lution Protocol (ARP) implementation
from GNU Coreutils10 that serves as a
running example in the article.

We then discuss at a high level
how symbolic techniques can help in
this direction by extracting candidate
specifications. These techniques uti-
lize some form of symbolic execution,
first introduced by King.14 We later de-
scribe debugging techniques that use
some form of symbolic techniques to
recover specifications. Table 1 outlines

Formula-
Based
Software
Debugging

 key insights
˽˽ The lack of explicit formal specifications

of correct program behavior has long held
back progress in automated debugging.

˽˽ To overcome this lack of formal
specifications, a debugging system can
use logical formula solving to attempt to
find the change in a program that would
make the failed test pass.

˽˽ Because the failure of a test in a program
can also be seen as an unsatisfiable
logical formula, debugging—the task
of explaining failures—can thus benefit
from advances in formula solving or
constraint satisfaction.

http://dx.doi.org/10.1145/2856103

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 69

I
M

A
G

E
 B

Y
 C

E
P

E
R

A

the symbolic techniques we discuss
and their relation to indirect specifi-
cations. These techniques all perform
symbolic analysis of various program
artifacts (such as failing traces or past
program versions) to help guide a pro-
grammer’s search for possible causes
of an observable error. Program arti-
facts are converted into a logical for-
mula through symbolic analysis, and
manipulation of such logical formu-

lae helps uncover specifications of in-
tended program behavior. We conclude
with a forward-looking view of symbolic
analysis used for automated program
repair, as reflected in research projects
DirectFix,17 Angelix,18 and SemFix.20

Computer-Assisted Debugging
There has been interest in computer-
assisted debugging since at least the
mid-1980s. Here, we highlight three

major ideas and refer the reader to
Zeller25 for a more comprehensive
overview of these and other ideas in
computer-assisted debugging.

The first major idea in harnessing
the power of computers to aid pro-
grammers in debugging was “slicing.”
Static slicing23 aims to preserve only as
much of the program as is necessary
to retain the behavior as far as some
output variable is concerned; such

70 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

contributed articles

programs (static analysis) or about
program artifacts like traces (dynamic
analysis). The maturity of SMT solvers
has made symbolic execution more
practical, triggering new directions
in software testing,4 where symbolic
execution and SMT constraint solving
are used to guide the search over the
huge search space of program paths
for generating tests. In this article,
we show how SMT solvers can be put
to use in the automation of software
debugging.

Running Example
We now present a running example
(see Figure 1) drawn from real-life
code. It is a simplified version from a
fragment of the ARP implementation
in GNU Coreutils10 in which a bug is
introduced when a redundant assign-
ment is added at line 5. We use it to
illustrate the various debugging meth-
ods explored throughout the article.

There is an assertion in the program
that captures a glimpse of the intended
behavior. The rest of the intended be-
havior is captured through the follow-
ing test cases. Without loss of general-
ity, assume DEFAULT, NULL, ETHER,
INET appearing in the program and/or
test cases are predefined constants.

Test 1:
	 arp A INET H ETHER (passing test).
	 Expected output: ETHER
Test 2:
	 arp A INET (failing test).
	 Expected output: DEFAULT
	 Actual output: NULL (assert fails)
Test 3:
	 arp H ETHER (passing test).
	 Expected output: ETHER

The program has a redundant as-
signment in line 5 that changes the
control flow of execution of Test 2 but
not of the other tests. The violation of
the intended behavior in this test is re-
flected in the failure of the assertion,
as well as in observing an output that
is different from the expected output.

The question here for a program-
mer is based on the failure of a test:
How can the root cause be found in the
failure? Being able to answer depends
on a specification of the intended be-
havior so we can find the root cause of
where the program behavior turned in-
correct. On the other hand, in most ap-

controlled preservation is achieved
through a static approximation of con-
trol and data dependencies. Dynamic
analysis1 applies the same idea but to
an execution of the program on a spe-
cific input; the advantage is only that
the control and data dependencies in
the execution are used in the computa-
tion of the slice, leading to a more suc-
cinct and precise slice.

The second significant idea is “delta
debugging”7,24 in which a programmer
tries to isolate the cause of a failure by
systematically exploring deviations
from a non-failure scenario. For exam-
ple, if a new version of code breaks while
the old version works, one can system-
atically try to isolate the specific change
in the program that can be held respon-
sible for the failure; the same idea also
applies to program executions. Delta
debugging takes advantage of compute
cycles by systematically exploring a
large number of program variations.

The third idea we highlight is “sta-
tistical fault isolation,”12,15 which looks
at execution profiles of passing and
failing tests. If execution of a statement
is strongly correlated (in a statistical
sense) with only the failing tests, it is
ranked highly in its suspiciousness.

Such ideas shift the burden of lo-

calizing an observable error from pro-
grammer to computer. Techniques
like delta debugging rely on explora-
tion or search over inputs or over the
set of states in a trace to localize the
cause of error.

Note the debugging problem im-
plicitly contains search-based sub-
problems (such as the locations at
which the program could be altered
to avoid the observable error or which
successful trace in the program you
can choose to compare a given fail-
ing trace). These search problems
in the debugging methods outlined
earlier would be solved through vari-
ous search heuristics. In contrast,
the symbolic analysis-based debug-
ging methods we present here solve
these search problems by “solving
logical formulae.” This new category
of methods has emerged essentially
out of an opportunity—the maturity
and wide availability of satisfiability
modulo theory (SMT) solvers.8 SMT
formulae are in first-order logic,
where certain symbols appearing in
the formula come from background
theories (such as theory of integers,
real numbers, lists, bitvectors, and ar-
rays). Efficient solving of SMT formu-
lae allows us to logically reason about

Figure 1. Running example buggy program.

Table 1. Debugging using symbolic techniques.

Name Symbolic Technique Information from

BugAssist13 Program Formula Internal inconsistency

Error Invariants10 Interpolants Internal inconsistency

Angelic Debugging5 Static Symbolic Execution Passing tests

Darwin22 Dynamic Symbolic Execution Previous version

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 71

contributed articles

plication domains, programmers do
not write down detailed specifications
of the intended behavior of their code.
Protocol specifications, even when
available, are usually at a much higher
level than the level of the implementa-
tion described here. In this particular
case, when Test 2 fails, how does the
programmer infer where the program
execution turned incorrect?

The execution trace of Test 2 is as
follows

0 hw _ set = 0; hw = NULL; ap = NULL;
1 while (i = getopt(....)) {
2	 switch (i) {
3 		 case 'A':
4 			 ap = getaftype(optarg);
5 			 hw _ set = 1;
6 			 break;
11 	 } // exit switch statement
1 while (i = getopt(....)) {
12 } // exit while loop
13 if (hw _ set == 0)
{ // this condition is false
16 assert(hw != NULL);
// assertion fails

So, when the assertion fails in line
16, which line in the program does the
programmer hold responsible for this
observed error? Is it line 13, where the
condition checked could have been
different (such as hw set == 1)? If this
was indeed the condition checked in
line 13, Test 2 would not fail. Is it line
5, where hw _ set is assigned? This
is the line we hypothesized as the bug
when we presented the buggy code to
a human, but how does a computer-
aided debugging method know which
line is the real culprit for the observed
error, and can it be fixed?

In general, for any observable error,
there are several ways to fix a fault, and
the definition of the fault often depends
on how it is fixed. Since specifications
are unavailable, have we thus reached
the limit of what can be achieved in
computer-assisted debugging? For-
tunately, it turns out some notion of
intended behavior of the program can
be recovered through indirect means
(such as internal inconsistency of the
failed trace, passing test cases, or an
older working version of the same pro-
gram). In this article, we discuss debug-
ging methods that rely on such indirect
program specifications to find the root
cause of an observable error.

Using Satisfiability
The technique we discuss first is called
“BugAssist”13 in which the input and
desired output information from a fail-
ing test are encoded as constraints.
These input-output constraints are then
conjoined with the program formula,
which encodes the operational seman-
tics of the program symbolically along
all paths; see Figure 2 for an overview
of conversion from a program to a for-
mula. In the example program of Figure
1, we produce the following formula (φ):

φ = arg[1] = A ∧ arg[2] = INET ∧ arg[3]
= NULL
	 ∧ hw_set0 = 0 ∧ hw0 = NULL ∧ ap0 =
NULL
	 ∧ i1 = arg[1] ∧ i1 ≠ NULL
	 ∧ guard3 = (i1 = = A)
	 ∧ ap4 = arg[2]
	 ∧ hw_set5 = 1
	 ∧ ap11 = guard3 ? ap4 : ap0
	 ∧ hw_set11 = guard3 ? hw_set5 : hw_set0
	 ∧ i′1 = arg[3] ∧ i′1 = = NULL
	 ∧ guard13 = (hw_set11 = = 0)
	 ∧ hw14 = DEFAULT
	 ∧ hw15 = guard13 ? hw14 : hw0
	 ∧ hw15 ≠ NULL ∧ hw15 = = DEFAULT

The arg elements refer to the input
values, similar to argv of the C lan-
guage; here, the inputs are for Test 2.
The last line of clauses represents the
expectation of Test 2. The remainder
of the formula represents the program
logic. (For brevity, we have omitted the
parts of the formula corresponding to
the case 'H', as it does not matter for
this input.) The variable i′1 refers to the
second time the loop condition while
is evaluated, at which point the loop
exits. We use = to indicate assignment
and == to indicate equality test in the
program, though for the satisfiability of
the formula both have the same mean-
ing.

The formula φ, though lengthy, has
one-to-one correspondence to the trace
of Test 2 outlined earlier. Since the
test input used corresponds to a failing
test, the formula is unsatisfiable.

The BugAssist tool tries to infer
what went wrong by trying to make a
large part of the formula satisfiable,
accomplishing it through MAX-SAT19
or MAX-SMT solvers. As the name sug-
gests, a MAX-SAT solver returns the
largest possible satisfiable sub-formu-
la of a formula; the sub-formula omits

Fortunately,
it turns out
some notion of
intended behavior
of the program
can be recovered
through
indirect means.

72 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

contributed articles

straint corresponds to a good fix. Real-
izing this potential regression, the pro-
grammer using BugAssist would mark
guard13 = (hw_set11 = = 0) as a hard con-
straint. Marking as a hard constraint
indicates to the solver it should explore
other lines in the program as possible
causes of error.

The MAX-SAT solver will then high-
light another (set of) constraints, say,
hw_set5 = 1, meaning just this con-
straint can be omitted (or changed) to
make the overall formula satisfiable.
The reader can verify this forces guard13
to be true. This corresponds to identi-
fying line 5 in Figure 1 as the place to be
fixed. Here is the correct fix

5: // hw _ set = 1; FIX: deleted line

Interestingly, from the perspective of
the satisfiability of the formula, chang-
ing the value assigned to hw _ set from
1 to 0 is also a plausible but not robust
fix, meaning it can fail other tests, as we
show later in the article.

The BugAssist technique tries to ex-
tract the reason for failure through analy-
sis of the error trace. Extraction is done
iteratively, by successively finding mini-
mal portions of the formula, the omis-
sion or alteration of which can make the
error trace formula satisfiable. In some
sense, the complement of MAX-SAT re-
ported by BugAssist in repeated itera-
tions form legitimate explanations of the
observed failure in the error trace being
examined. As may be observed even from
our simple example, the technique may
report several potential faults. It is thus
not so much as a one-shot fault-localiza-
tion method as it is an “iterative explora-
tion” of the potential locations where a
change could avert the error in question.
The iterative exploration is guided by the
computation of the maximum satisfi-
able portion of an unsatisfiable formula
that captures the program failure.

Using Interpolants
An alternative method, called “error
invariants,”9 tries to find the reason for
failure by examining error propagation
in the different positions of the error
trace. Identifying error root-cause is
achieved by computing interpolant for-
mula at each position of the error trace.
The notion of interpolant16 requires
some explanation. Given a logical im-
plication X => Y involving first-order

certain conjuncts of the original for-
mula. Moreover, the MAX-SAT solver is
instructed that certain constraints are
hard constraints, in that they cannot be
omitted. Constraints on input and out-
put are typically hard. The solvers will
find the maximum part of the formula,
which is satisfiable, thereby suggesting
the minimal portion of the program
that needs to be changed to make the
formula satisfiable. In this sense, the
technique attempts to use internal in-
consistency to help a programmer, as
an indirect source of specification.

We now illustrate how BugAssist
would work on the aforementioned for-
mula. We first mark the clauses related
to args, as well as the final constraints on
hw15 as hard. The MAX-SAT solver could
first highlight the constraint guard13 =

(hw_set11 = = 0) as the one to be omitted
for making the rest of the formula satis-
fiable. The reader can verify that setting
the (now) unbound variable guard13 to
true will make hw15 equal to hw14, satis-
fying the output constraints. In terms of
the program, this corresponds to an at-
tempt to fix the program at line 13

13: if (hw _ set == 1) { // FIX: changed
guard

Even though this fix passes Test 2,
it will fail previously passing tests like
Test 1, thereby introducing regres-
sions. The fix is thus incorrect. How-
ever, BugAssist does not vet any of the
code highlighted by the technique,
relying instead on the programmer
to assess whether the suggested con-

Figure 3. Using interpolants to analyze error traces.

Ip

input
values

Find interpolant at position p

expected
output

p

YX

X

X

∧

⇒

⇒ ⇒

¬ Y

¬ Y

≡ false

Figure 2. Conversion of program to formula; the formula encodes, using guards, possible
final valuations of variables.

1 input y; // initially x = z = 0
2 if (y > 0){
3 z = y * 2;
4 x = y - 2;
5 x = x - 2; }
6 if (z == x)
7 output(“How did I get here”);
8 else if (z > x)
9 output(“Error”);

Here is the corresponding formula

guard2 = (y > 0)
∧ z3 = y * 2
∧ x4 = y - 2
∧ x5 = x4 - 2
∧ z6 = guard2 ? z3 : 0
∧ x6 = guard2 ? x5 : 0
∧ guard6 = (z6 == x6)
∧ guard8 = (z6 > x6)
∧ output = guard6 ? How ... : (guard8 ? Error: nil)

In it, variables are given a subscript based on the line on which an instance is assigned.
Guard variables denote conditions that regulate values of variables when potentially different
values of a variable reach a branch point. For example, guard2 regulates the value of z6 based
on whether the default initial value or the assignment to z3 reaches it.

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 73

contributed articles

logic formulae X and Y, an interpolant
is a formula I satisfying

X => I => Y
The formula I is expressed through

the common vocabulary of X and Y.
Figure 3 outlines the use of interpo-
lants for analyzing error traces. The er-
ror trace formula is a logical conjunc-
tion of the input valuation, the effect of
each program statement on the trace,
and the expectation about output.

Given any position p in the trace, if
we denote the formula from locations
prior to p as X, and the formula from lo-
cations in the trace after p as Y, clearly X
∧ Y is false. Thus ¬(X ∧ Y) holds, meaning
¬X ∨ ¬Y holds, meaning X => ¬Y holds.
The interpolant Ip at position p in the er-
ror trace will thus satisfy X => Ip => ¬Y.
Such an interpolant can be computed
at every position p in the error trace for
understanding the reason behind the
observable error.

Let us now understand the role of
interpolants in software debugging.
We first work out our simple example,
then conceptualize use of the logical
formula captured by interpolant in
explaining software errors. In our run-
ning example, the interpolants at the
different positions are listed in Table
2, including interpolant formula after
each statement. Note there are many
choices of interpolants at any posi-
tion in the trace, and we have shown
the weakest interpolant in this simple
example. The trace here again corre-
sponds to the failing execution of Test
2 on the program in Figure 1, and we
used the same statements earlier in
this article on BugAssist.

What role do interpolants play in ex-
plaining an error trace? To answer, we
examine the sequence of interpolants
computed for the error trace in our
simple example program, looking at
the second column in Table 2 and con-
sidering only non-repeated formulae:

arg[1] = A
arg[1] = A ∧ hw0 = NULL
i1 = A ∧ hw0 = NULL
guard3 = true ∧ hw0 = NULL
guard3 = true ∧ hw0 = NULL ∧ hw_set5
= 1
hw0 = NULL ∧ hw_set11 = 1
hw0 = NULL ∧ guard13 = false
hw15 = NULL

The sequence of interpolants here

the internal inconsistency of the faulty
execution to figure out possible causes
of error. Note, choosing interpolants
must be done with care—as interpo-
lants in general are not unique—for the
method to be effective in filtering away
irrelevant statements.6,9 Furthermore,
the scalability of these methods is a
concern today due to the huge length
of real-life traces and the slowness of
interpolating provers.16

Using Passing Tests
Another technique, called “Angelic De-
bugging”5 first proposed in 2011, ex-
plores the relationship between fault
localization and fix localization rather
closely, following the philosophy of de-
fining a possible fault in terms of how it
is fixed. In it, we explore the set of poten-
tial repairs that will make an observable
error disappear. Since the landscape
of syntactic repairs to try out is so vast,
the technique finds, via symbolic execu-
tion and constraint solving, a value that
makes the failing tests pass while con-
tinuing to pass the passing tests. Cru-
cially, the technique utilizes the infor-
mation contained in the passing tests
to help identify fix locations. The tech-
nique proceeds in two steps. In the first,
it attempts to find all the expressions
in the program that are candidates for
a fix; that is, a change made in that ex-
pression can possibly fix the program.
The second step rules out those fix loca-

shows the propagation of the error via
the sequence of variables arg[1], hw0,
i1, and so on. Propagation through
both data and control dependence is
tracked. Propagation through data de-
pendence corresponds to an incorrect
value being passed from one variable
to another through assignment state-
ments. Propagation through control
dependence corresponds to an incor-
rect valuation of the guard variables,
leading to an incorrect set of state-
ments being executed. Both types of
propagation are captured in the inter-
polant sequence computed over the
failed trace. The interpolant at a posi-
tion p in the error trace captures the
“cause” for failure expressed in terms
of variables that are live at p. Comput-
ing the interpolant at all locations of
the error trace allows the developer to
observe the error-propagation chain.

The other important observation to
make is program statements that do not
alter the interpolant are irrelevant to
the explanation of the error. In Table 2,
statements marked with a • are not rel-
evant to explaining the failure of Test
2. For example, anything relevant only
to the computation of ap is ignored,
an approach similar to backward dy-
namic slicing, though an interpolation-
based technique is more general than
dynamic slicing. The remaining state-
ments form a minimal error explana-
tion. Once again, the technique uses

Table 2. Interpolant computation at each statement; the statements marked with • have
the property that they do not alter the interpolant.

Statement Interpolant after statement

arg[1] = A arg[1] = A

arg[2] = INET • arg[1] = A

arg[3] = NULL • arg[1] = A

hw_set0 = 0 • arg[1] = A

hw0 = NULL arg[1] = A ∧ hw0 = NULL

ap0 = NULL • arg[1] = A ∧ hw0 = NULL

i1 = arg[1] i1 = A ∧ hw0 = NULL
guard3 = (i1 == A) guard3 = true ∧ hw0 = NULL

ap4 = arg[2] • guard3 = true ∧ hw0 = NULL

hw_set5 = 1 guard3 = true ∧ hw0 = NULL ∧ hw_set5 = 1

ap11 = guard3 ? ap4 : ap0 • guard3 = true ∧ hw0 = NULL ∧ hw_set5 = 1

hw_set11 = guard3 ? hw_set5 : hw_set0 hw0 = NULL ∧ hw_set11 = 1

i’1 = arg[3] • hw0 = NULL ∧ hw_set11 = 1

guard13 = (hw_set11 == 0) hw0 = NULL ∧ guard13 = false

hw14 = DEFAULT • hw0 = NULL ∧ guard13 = false

hw15 = guard13 ? hw14 : hw0 hw15 = NULL

hw15 ≠ NULL false

74 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

contributed articles

ic, we can find a plausible successful
execution of the program

13: if (!!) {

We omit the formulae, but they are
similar to ones shown earlier in this
article.

We now show the second step of the
method. It rules out those fix locations
for which changing the expression
would make previously passing tests
fail. Given a candidate fix location, it
asks the following question for each
of the passing inputs: Considering
the proposed fix location a hole (!!), is
there a way for the angel to provide a
value for the hole that is different from
the value observed at that location in
normal execution on that input? If it
is possible, then the fix location is a
plausible fix location. The technique
provides the angelic values by using
symbolic execution.

First we consider the fix location of
line 5, right-hand side. For Test 1, the
hole in the fix location (line 5 of Figure
1) will be replaced by α, and α ≠ 1 added
to the constraint, to represent differ-
ence from the value observed here in
normal execution. More formally, the
symbolic environment at line 5 will be

e5 = [hw0 = NULL, i = A, ap = INET, hw_
set = α; α ≠ 1]

From here on, symbolic execution will
find a path that succeeds. Likewise, for
Test 2 and Test 3. The passing tests
thus accept the proposed fix location as
a plausible one.

Now consider the fix location of line
13, where we want the branch to have a
different outcome. For Test 1, the en-
vironment at line 13 will be

e13 = [hw8 = ETHER, hw_set = 1, …,
guard13 = α; α ≠ false]

There is no successful execution given
this environment. Test 1 therefore
rules out line 13 as a plausible fix loca-
tion, deeming no syntactic variation of
the condition is likely to fix the program.

Although the technique determines
plausible fix locations and not fixes
themselves, going from a fix location to
a fix is not straightforward. Consider a
candidate syntactic fix a human could
provide for line 5. For example, using the

tions for which changing the expression
would make previously passing tests
fail. It does so without knowing any pro-
posed candidate fix, again because the
landscape of syntactic fixes is so vast;
rather, it works on just the basis of a
candidate fix “location.”

Consider again the failing execu-
tion of Test 2 on the program in Fig-
ure 1. We illustrate how the technique
works, focusing first on statement 5.
The technique conceptually replaces
the right-hand-side expression by a
“hole” denoted by !!, meaning an as-
yet-unknown expression

5: hw_set = !!

The interpretation of !! is that an an-
gel would supply a suitable value for it
if it is possible to make the execution
go to completion, hence the name of
the technique. The angel is simulated
by a symbolic execution tree (see Fig-
ure 4 for details on how to compute a
symbolic execution tree), looking for
a path along which the path formula
is satisfiable. In our running example,
the symbolic execution comes up with
the following environment when going
through the true branch at line 13 and
expecting a successful termination

e13T = [hw0 = NULL, i = A, ap = INET ,
hw_set = α
	 guard13 = true, hw14 = DEFAULT
	 hw15 = DEFAULT;
	 α = 0 ∧ hw15 ≠ NULL ∧ hw15 = =
DEFAULT]

and the following when going through
the false branch

e13F = [hw0 = NULL, i = A, ap = INET,
hw_set = α
	 guard13 = false, hw15 = NULL;
	 α ≠ 0 ∧ hw15 ≠ NULL ∧ hw15 = =
DEFAULT]

α represents the angelic value assigned
at line 5. Recall we carried out concrete
execution up to statement 5, with the
same input as shown in formula φ earlier.

e13T has a satisfiable condition when
α is 0, whereas e13F is not satisfiable due
to the conflict on the value of hw15. The
execution can thus be correct in case
the guard at line 13 evaluates to true.

Focusing next on statement 13, we
find making the condition itself angel-

The scalability of
symbolic analysis-
based debugging
methods crucially
depends on the
scalability of SMT
constraint solving.

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 75

contributed articles

following fix at line 5 works for tests 1–3

5: hw_set = 0

The astute reader will notice this par-
ticular fix is not an ideal fix. Given
another test

Test 4:	 arp H ETHER A INET
	 Expected output: ETHER
	 Actual output: DEFAULT

This test will fail with the proposed
fix, even though the location of the fix
is the correct one. The correct fix is to
eliminate the effect of line 5 altogether

5: hw_set = hw_set; // or delete the
statement

The example reflects the limitations
in attempting to fix a program when
working with an incomplete notion of
“specification.”

Using Other Implementations
Programs are usually not written from
scratch; rather, versions of a program
are gradually checked in. When we
introduce changes into a previously
working version (where we say the ver-
sion is “working,” since all test cases
pass), certain passing tests may thus
fail. To debug the cause of the observed
failure in such a failed test t, we can
treat the behavior of t in the previous
working version as a description of the
programmer’s intention.

The technique presented in Qi et
al.,22 called “Darwin,” developed in
2009, executes the failing test t in the
previous program version P, as well
as the current program version P′. It
then calculates the path conditions of
t in both program versions along the
execution trace of t in both program
versions; see Figure 5 for explanation
of how such path conditions are com-
puted. Calculating path conditions
leads to path conditions f and f′. One
can then solve the formula f ∧ ¬f′ to
find test input t′ that follows the same
path as t in the previous program ver-
sion and a different path in the current
program version. The execution of t′
in the current program version P′ can
then be compared with the execution
of the failing test t in current version P′
in terms of differences in their control
flow. That is, the behavior of t′ in cur-

 Figure 4. Symbolic execution tree.

Consider again the code fragment in Figure 2. Suppose input y is a symbolic input, with an unknown
value of, say, α. In symbolic execution,14 the store maps variables that may be concrete values or
symbolic expressions. At an assignment, the store is updated with the evaluation of right-hand-side
expression, which may be a symbolic expression. At a branch, if the decision involves a symbolic
expression, both sides of the branch are executed in separate “threads,” with corresponding branch
conditions taken into account.

At line 2, two threads of symbolic execution will be created. In the first, the environment e2T is [x =
0, z = 0, y = α;α > 0], and the other, e2F, is [x = 0, z = 0, y = α;α ≤ 0]; note we included the conditions
encountered on the path thus far in the environment. These conditions appear following the semicolon
(see also Figure 5.). Here is the symbolic execution tree for Figure 2

x	
 =	
 0,	
 z	
 =	
 0,	
 y	
 =	
 α;	
 	

x	
 =	
 0,	
 z	
 =	
 0,	
 y	
 =	
 α;	

α	
 >	
 0	

	
 y	
 >	
 0	

x	
 =	
 0,	
 z	
 =	
 0,	
 y	
 =	
 α;	

α	
 ≤	
 0	

	
 ¬(y	
 >	
 0)	

x	
 =	
 0,	
 z	
 =	
 2α,	
 y	
 =	
 α;	

α	
 >	
 0	

z=y*2	

x	
 =	
 α-­‐2,	
 z	
 =	
 2α,	
 y	
 =	

α;	
 α	
 >	
 0	

x=y-­‐2	

x	
 =	
 α-­‐4,	
 z	
 =	
 2α,	
 y	
 =	
 α;	

α	
 >	
 0	

x=x-­‐2	

x	
 =	
 0,	
 z	
 =	
 0,	
 y	
 =	
 α;	

α	
 ≤	
 0	

z==	
 x	

x	
 =	
 α-­‐4,	
 z	
 =	
 2α,	
 y	
 =	
 α;	

α	
 >	
 0	
 ∧	
 2α	
 ==	
 α-­‐4	

	
 z	
 ==x	

x	
 =	
 α-­‐4,	
 z	
 =	
 2α,	
 y	
 =	
 α;	

α	
 >	
 0∧	
 2α	
 !=	
 α-­‐4	

	
 z	
 !=	
 x	

e2T	
 e2F	

e2T,6T	
 e2T,6F	

…	

…	

e2F,6T	

…	

At line 6, e2T forks into: e2T,6T and e2T,6F. e2T,6T will be [x = α – 4, z = α * 2, y = α;α > 0 ∧ α – 4 = α * 2],
which will be discarded since the condition is unsatisfiable.

Symbolic execution tree construction is similar to the program formula construction in Figure 2. For this
reason, it is also called “static symbolic execution.” The difference is, in program formula, threads were
merged with control-flow join points, whereas in symbolic execution tree, there is no merging.

Figure 5. Illustration of path conditions.

Consider yet again the program in Figure 2. Suppose we want to find the path condition of the only
way to reach the error statement, or the path 〈1, 2, 3, 4, 5, 6, 8, 9〉. We traverse forward along the
sequence of statements in the given path, starting with a null formula and gradually build it up. All
variables start with symbolic values. At any point during the traversal of the trace, we maintain an
assignment store and a logical formula. The result is

˲˲ For every assignment, we update the symbolic assignment store; and
˲˲ For every branch, we conjoin the branch condition—or its converse if the branch is not taken—

with the path condition; while doing so, we use the symbolic assignment store for every variable
appearing in the branch condition.

At the end of the path, the logical formula captures the path condition. For the example path
〈1, 2, 3, 4, 5, 6, 8, 9〉 in the given program, the path condition can be calculated as shown in
the table here. Whenever the input satisfies y > 0∧2y ≠ y – 4∧2y > y – 4, the program execution
will trace exactly this path.

Assignment store

1
2
3
4
5
6
8
9

Logical Formula

Note this form of symbolic execution is similar to the one in Figure 4; the difference is one path
is already given here, so there is no execution tree to be explored. This is sometimes also called
“dynamic symbolic execution.”

76 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

contributed articles

is satisfiable because arg[2] = NULL is
satisfiable, pointing to the condition
being misplaced in the code. This
is indeed where the bug lurks. Even
though the entire coding style and the
control flow in the buggy implemen-
tation was quite different from the
reference implementation, the de-
bugging method is thus able to ignore
the differences in coding style in the
buggy implementation. Note arg[2]
= NULL is contributed by the branch
condition ap != NULL, a correlation
an automated debugging method can
keep track of. The method thus natu-
rally zooms into the misplaced check
ap != NULL through a computation
of satisfiability of the deviations of
the failing test’s path condition.

One may question the choice of
considering the past version as a
specification of what the program is
supposed to achieve, a question that
arises because the software require-
ments of an earlier program version
may differ from the requirements of
the current program version. How-
ever, the comparison works as long as
the program features are common to
both versions and the requirements
are unchanged.

Perspectives
We have explored symbolic execution
and constraint solving for software de-
bugging. We conclude by discussing
scalability and applicability of the pre-
sented techniques, along with possible
future research directions.

Scalability and applicability. The
scalability of the techniques de-
scribed here need greater investiga-
tion. Due to the semantic nature of the
analysis, symbolic execution-based
debugging of regression errors22 has
been adapted to multiple settings of
regression, resulting in wide applica-
bility, including regressions in a pro-
gram version as opposed to previous
version; regression in an embedded
software (such as Linux Busybox) as
opposed to reference software (such
as GNU Coreutils);3 and regression
in a protocol implementation (such
as miniweb Web server implement-
ing the http protocol) as opposed to
a reference implementation of the
protocol, as in the Apache Web serv-
er. In these large-scale applications,
the symbolic analysis-based regres-

rent program P′ is taken as the “speci-
fication” against which the behavior of
the failing test t is compared for differ-
ence in control flow.

Such methods are based on se-
mantic analysis, rather than a com-
pletely syntactic analysis of differ-
ences across program versions (such
as running a diff between program
versions). Being based on semantic
analysis these debugging methods
can analyze two versions with sub-
stantially different implementations
and locate causes of error.

To illustrate this point, consider
the fixed Address Resolution Proto-
col (ARP) implementation—Figure
1 with line 5 deleted—we discussed
earlier as the reference version. This
program will pass the test Test 2.
Now assume a buggy program imple-
mentation with a substantially differ-
ent programming style but with in-
tention to accomplish the same ARP
(see Figure 6). The test Test 2 fails in
this implementation

Test 2:
	 arp A INET (failing test).
	 Expected output: DEFAULT
	 Observed output: INET

First of all, a simple diff of the
program versions cannot help since
almost the entire program will ap-
pear in the diff. A careful com-
parison of the two implementations
shows the logic of the protocol the
programmer would want to imple-
ment has been mangled in this imple-
mentation. The computation of get
hwtype(DEFAULT) has been (cor-
rectly) moved. However, the compu-

tation of get _ hwtype(optarg)a
is executed under an incorrect condi-
tion, leading to the failure in the test
execution. A redundant check ap !=
NULL has slipped into line 8.

We now step through the localiza-
tion of the error. For the test arp A
INET the path condition in the refer-
ence version is (since i is set to arg[1])
as follows

f ≡ arg[1] = A

The path condition in the buggy imple-
mentation is as follows (since i is set to
arg[1] and ap is set to arg[2] (via optarg)

f ′ ≡ arg[1] = A ∧ (arg[2] ≠ NULL ∨ arg[1] = H)

The negation of f ′ is the following dis-
junction

¬f ′ ≡ arg[1] ≠ A ∨ ¬(arg[2] ≠ NULL ∨ arg[1] = H)

f ∧ ¬f ′ thus has two possibilities to
consider, one for each disjunct in ¬f ′

1.	arg[1] = A	 ∧	 arg[1] ≠ A
2.	arg[1] = A	 ∧	 ¬(arg[2] ≠ NULL ∨
arg[1] = H)

The first formula is not satisfiable, and
the second one simplifies to

arg[1] = A ∧ arg[2] = NULL ∧ arg[1] ≠ H

A satisfying assignment to this second
formula is an input that shows the es-
sential control-flow path deviation—
in the defective program—from the
failure-inducing input. This formula

a	 Assume get hwtype(INET) returns INET.

Figure 6. Assume line 5 in Figure 1 was removed yielding the correct program for the code
fragment; here we show a different implementation of the same code.

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 77

contributed articles

sion debugging methods of Banerjee
et al.3 and Qi et al.22 localized the er-
ror to within 10 lines of code in fewer
than 10 minutes.

Among the techniques covered
here, the regression-debugging
methods3,22 have shown the great-
est scalability, with the other tech-
niques being employed on small-to-
moderate-scale programs. Moreover,
the scalability of symbolic analysis-
based debugging methods crucially
depends on the scalability of SMT
constraint solving.8 Compared to sta-
tistical fault-localization techniques,
which are easily implemented, sym-
bolic execution-based debugging
methods still involve more imple-
mentation effort, as well as greater
execution time overheads. While we
see much promise due to the growth
in SMT solver technology, as partly
evidenced by the scalability of the
regression-debugging methods,
more research is needed in symbolic
analysis and SMT constraint solving
to enhance the scalability and appli-
cability of these methods.

Note for all of the presented de-
bugging methods, professional
programmers need user studies to
measure programmer productivity
gain that might be realized through
these methods. Parnin and Orso21
highlighted the importance of user
studies in evaluating debugging
methods. The need for user studies
may be even more acute for methods
like BugAssist that provide an itera-
tive exploration of the possible error
causes, instead of providing a final
set of diagnostic information captur-
ing the lines likely to be the causes of
errors. Finally, for the interpolant-
based debugging method, the issue
of choosing suitable interpolants
needs further study, a topic being in-
vestigated today (such as by Albargh-
outhi and McMillan2).

Other directions. Related to our
topic of using symbolic execution for
software debugging, we wish to say
symbolic execution can also be useful
for “bug reproduction,” as shown by
Jin and Orso.11 The bug-reproduction
problem is different from both test
generation and test explanation. Here,
some hints may be reported about the
failing execution by on-the-field users
in the form of a crash report, and these

(Paris, France, Aug. 27–31). Springer, 2012.
10.	 GNU Core Utilities; http://www.gnu.org/software/

coreutils/coreutils.html
11.	 Jin, W. and Orso, A. BugRedux: Reproducing field

failures for in-house debugging. In Proceedings of the
34th International Conference on Software Engineering
(Zürich, Switzerland, June 2–9). IEEE, 2012.

12.	 Jones, J.A., Harrold, M.J., and Stasko, J.T.
Visualization of test information to assist fault
localization. In Proceedings of the 24th International
Conference on Software Engineering (Orlando, FL, May
19–25). ACM Press, New York, 2002.

13.	 Jose, M. and Majumdar, R. Cause clue clauses:
Error localization using maximum satisfiability. In
Proceedings of the 32nd International Conference on
Programming Language Design and Implementation
(San Jose, CA, June 4–8). ACM Press, New York, 2011,
437–446.

14.	 King, J.C. Symbolic execution and program testing.
Commun. ACM 19, 7 (July 1976) 385–394.

15.	 Liblit, B., Naik, M., Zheng, A.X., Aiken, A., and Jordan,
M.I. Scalable statistical bug isolation. In Proceedings
of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (Chicago, IL,
June 12–15). ACM Press, New York, 2005, 15–26.

16.	 McMillan, K.L. An interpolating theorem prover.
Theoretical Computer Science 345, 1 (Nov. 2005),
101–121.

17.	 Mechtaev, S., Yi, J., and Roychoudhury, A. DirectFix:
Looking for simple program repairs. In Proceedings
of the 37th IEEE/ACM International Conference on
Software Engineering (Firenze, Italy, May 16–24).
IEEE, 2015, 448–458.

18.	 Mechtaev, S., Yi, J., and Roychoudhury, A. Angelix:
Scalable multiline program patch synthesis via
symbolic analysis. In Proceedings of the 38th
International Conference on Software Engineering
(Austin, TX, May 14–22) ACM Press, New York, 2016.

19.	 Morgado, A., Heras, F., Liffiton, M., Planes, J., and
Marques-Silva, J. Iterative and core-guided MaxSAT
solving: A survey and assessment. Constraints 18, 4
(2013), 478–534.

20.	 Nguyen, H.D.T., Qi, D., Roychoudhury, A., and Chandra,
S. SemFix: Program repair via semantic analysis. In
Proceedings of the 35th International Conference on
Software Engineering (San Francisco, CA, May 18–26).
IEEE/ACM, 2013, 772–781.

21.	 Parnin, C. and Orso, A. Are automated debugging
techniques actually helping programmers? In
Proceedings of the 20th International Symposium on
Software Testing and Analysis (Toronto, ON, Canada,
July 17–21) ACM Press, New York, 2011, 199–209.

22.	 Qi, D., Roychoudhury, A., Liang, Z., and Vaswani,
K. DARWIN: An approach for debugging evolving
programs. ACM Transactions on Software Engineering
and Methodology 21, 3 (2012).

23.	 Weiser, M. Program slicing. IEEE Transactions on
Software Engineering 10, 4 (1984), 352–357.

24.	 Zeller, A. Yesterday my program worked. Today it fails.
Why? In Proceedings of the Seventh Joint Meeting of
European Software Engineering Conference and ACM
SIGSOFT Symposium on Foundations of Software
Engineering, Lecture Notes in Computer Science
(Toulouse, France, Sept. 1999). Springer, 1999, 253–267.

25.	 Zeller, A. Why Programs Fail: A Guide to Systematic
Debugging. Elsevier, 2006.

Abhik Roychoudhury (abhik@comp.nus.edu.sg) is a
professor of computer science in the School of Computing
at the National University of Singapore and an ACM
Distinguished Speaker and leads the TSUNAMI center, a
software-security research effort funded by the Singapore
National Research Foundation.

Satish Chandra (schandra@acm.org) leads the advanced
programming tools research team at Samsung Research
America, Mountain View, CA, and is an ACM Distinguished
Scientist.

© 2016 ACM 0001-0782/16/07 $15.00

hints can be combined through sym-
bolic execution to construct a failing
execution trace.

Finally, the software-engineer-
ing community has shown much
interest in building semiautomat-
ed methods for program repair. It
would be interesting to see how sym-
bolic execution-based debugging
methods can help develop program-
repair techniques. The research
community is already witnessing de-
velopment of novel program-repair
methods based on symbolic execu-
tion and program synthesis.17,18,20

Acknowledgments
We would like to acknowledge many
discussions with our co-authors in Ba-
nerjee et al.,3 Chandra et al.,5 and Qi et
al.22 We also acknowledge discussions
with researchers in a Dagstuhl semi-
nar on fault localization (February
2013) and a Dagstuhl seminar on sym-
bolic execution and constraint solving
(October 2014). We further acknowl-
edge a grant from the National Re-
search Foundation, Prime Minister’s
Office, Singapore, under its National
Cybersecurity R&D Program (Award
No. NRF2014NCR-NCR001-21) and ad-
ministered by the National Cybersecu-
rity R&D Directorate. 	

References
1.	 Agrawal, H. and Horgan, J. Dynamic program slicing.

In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(White Plains, NY, June 20–22). ACM Press, New
York, 1990.

2.	 Albarghouthi, A. and McMillan, K.L. Beautiful
interpolants. In Proceedings of the 25th International
Conference on Computer-Aided Verification, Lecture
Notes in Computer Science 8044 (Saint Petersburg,
Russia, July 13–19). Springer, 2013.

3.	 Banerjee, A., Roychoudhury, A., Harlie, J.A., and Liang,
Z. Golden implementation-driven software debugging.
In Proceedings of the 18th International Symposium
on Foundations of Software Engineering (Santa Fe, NM,
Nov. 7–11). ACM Press, New York, 2010, 177–186.

4.	 Cadar, C. and Sen, K. Symbolic execution for software
testing: Three decades later. Commun. ACM 56, 1
(Jan. 2013), 82–90.

5.	 Chandra, S., Torlak, E., Barman, S., and Bodik, R.
Angelic debugging. In Proceedings of the 33rd
International Conference on Software Engineering
(Honolulu, HI, May 21–28). ACM Press, New York,
2011, 121–130.

6.	 Christ, J., Ermis, E., Schaff, M., and Wies, T. Flow
sensitive fault localization. In Proceedings of the
14th International Conference on Verification Model
Checking and Abstract Interpretation (Rome, Italy,
Jan. 20–22). Springer, 2013.

7.	 Cleve, H. and Zeller, A. Locating causes of program
failures. In Proceedings of the 27th International
Conference on Software Engineering (St. Louis, MO,
May 15–21). ACM Press, New York, 2005.

8.	 de Moura, L. and Björner, N. Satisfiability modulo
theories: Introduction and applications. Commun.
ACM 54, 9 (Sept. 2011), 69–77.

9.	 Ermis, E., Schaff, M., and Wies, T. Error invariants. In
Proceedings of the 18th International Symposium on
Formal Methods, Lecture Notes in Computer Science

