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Satisfiability modulo theory solvers can  
help automate the search for the root cause  
of observable software errors. 

BY ABHIK ROYCHOUDHURY AND SATISH CHANDRA 

PROGRAMMING, THOUGH A  creative activity, poses 
strict demands on its human practitioners in terms 
of precision, and even talented programmers make 
mistakes. The effect of a mistake can manifest in 
several ways—as a program crash, data corruption, or 
unexpected output. Debugging is the task of locating the 
root cause of an error from its observable manifestation. 
It is a challenge because the manifestation of an error 
might become observable in a program’s execution 
much later than the point at which the error infected 
the program state in the first place. Stories abound of 
heroic efforts required to fix problems that cropped up 
unexpectedly in software that was previously considered 
to be working and dependable. 

Given the importance of efficient debugging in overall 
software productivity, computer-assisted techniques 

for debugging are an active topic of 
research. The premise of such tech-
niques is to employ plentiful com-
pute cycles to automatically narrow 
the scope of where in the source code 
the root cause is likely to be, thereby 
reducing the amount of time a pro-
grammer must spend on debugging. 
Such computer-assisted debugging 
techniques, as discussed in this ar-
ticle, do not promise to pinpoint the 
mistake in a program but only to nar-
row the scope of where the mistake 
might lurk. Such techniques are also 
sometimes called “fault localization” 
in the software-engineering literature. 

We now proceed to review the ma-
jor advances in computer-assisted de-
bugging and describe one of the ma-
jor challenges in debugging—lack of 
specifications capturing the intended 
behavior of the program; that is, if the 
intended behavior of the program is 
not available, how can a debugging 
method infer where the program went 
“wrong”? We next present a motivating 
example extracted from Address Reso-
lution Protocol (ARP) implementation 
from GNU Coreutils10 that serves as a 
running example in the article. 

We then discuss at a high level 
how symbolic techniques can help in 
this direction by extracting candidate 
specifications. These techniques uti-
lize some form of symbolic execution, 
first introduced by King.14 We later de-
scribe debugging techniques that use 
some form of symbolic techniques to 
recover specifications. Table 1 outlines 

Formula-
Based 
Software 
Debugging 

 key insights
˽˽ The lack of explicit formal specifications 

of correct program behavior has long held 
back progress in automated debugging. 

˽˽ To overcome this lack of formal 
specifications, a debugging system can 
use logical formula solving to attempt to 
find the change in a program that would 
make the failed test pass. 

˽˽ Because the failure of a test in a program 
can also be seen as an unsatisfiable 
logical formula, debugging—the task  
of explaining failures—can thus benefit 
from advances in formula solving or 
constraint satisfaction. 

http://dx.doi.org/10.1145/2856103
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the symbolic techniques we discuss 
and their relation to indirect specifi-
cations. These techniques all perform 
symbolic analysis of various program 
artifacts (such as failing traces or past 
program versions) to help guide a pro-
grammer’s search for possible causes 
of an observable error. Program arti-
facts are converted into a logical for-
mula through symbolic analysis, and 
manipulation of such logical formu-

lae helps uncover specifications of in-
tended program behavior. We conclude 
with a forward-looking view of symbolic 
analysis used for automated program 
repair, as reflected in research projects 
DirectFix,17 Angelix,18 and SemFix.20 

Computer-Assisted Debugging 
There has been interest in computer-
assisted debugging since at least the 
mid-1980s. Here, we highlight three 

major ideas and refer the reader to 
Zeller25 for a more comprehensive 
overview of these and other ideas in 
computer-assisted debugging. 

The first major idea in harnessing 
the power of computers to aid pro-
grammers in debugging was “slicing.” 
Static slicing23 aims to preserve only as 
much of the program as is necessary 
to retain the behavior as far as some 
output variable is concerned; such 
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programs (static analysis) or about 
program artifacts like traces (dynamic 
analysis). The maturity of SMT solvers 
has made symbolic execution more 
practical, triggering new directions 
in software testing,4 where symbolic 
execution and SMT constraint solving 
are used to guide the search over the 
huge search space of program paths 
for generating tests. In this article, 
we show how SMT solvers can be put 
to use in the automation of software 
debugging. 

Running Example 
We now present a running example 
(see Figure 1) drawn from real-life 
code. It is a simplified version from a 
fragment of the ARP implementation 
in GNU Coreutils10 in which a bug is 
introduced when a redundant assign-
ment is added at line 5. We use it to 
illustrate the various debugging meth-
ods explored throughout the article. 

There is an assertion in the program 
that captures a glimpse of the intended 
behavior. The rest of the intended be-
havior is captured through the follow-
ing test cases. Without loss of general-
ity, assume DEFAULT, NULL, ETHER, 
INET appearing in the program and/or 
test cases are predefined constants. 

Test 1: 
	 arp A INET H ETHER (passing test). 
	 Expected output: ETHER 
Test 2: 
	 arp A INET (failing test). 
	 Expected output: DEFAULT 
	 Actual output: NULL (assert fails) 
Test 3: 
	 arp H ETHER (passing test). 
	 Expected output: ETHER 

The program has a redundant as-
signment in line 5 that changes the 
control flow of execution of Test 2 but 
not of the other tests. The violation of 
the intended behavior in this test is re-
flected in the failure of the assertion, 
as well as in observing an output that 
is different from the expected output. 

The question here for a program-
mer is based on the failure of a test: 
How can the root cause be found in the 
failure? Being able to answer depends 
on a specification of the intended be-
havior so we can find the root cause of 
where the program behavior turned in-
correct. On the other hand, in most ap-

controlled preservation is achieved 
through a static approximation of con-
trol and data dependencies. Dynamic 
analysis1 applies the same idea but to 
an execution of the program on a spe-
cific input; the advantage is only that 
the control and data dependencies in 
the execution are used in the computa-
tion of the slice, leading to a more suc-
cinct and precise slice. 

The second significant idea is “delta 
debugging”7,24 in which a programmer 
tries to isolate the cause of a failure by 
systematically exploring deviations 
from a non-failure scenario. For exam-
ple, if a new version of code breaks while 
the old version works, one can system-
atically try to isolate the specific change 
in the program that can be held respon-
sible for the failure; the same idea also 
applies to program executions. Delta 
debugging takes advantage of compute 
cycles by systematically exploring a 
large number of program variations. 

The third idea we highlight is “sta-
tistical fault isolation,”12,15 which looks 
at execution profiles of passing and 
failing tests. If execution of a statement 
is strongly correlated (in a statistical 
sense) with only the failing tests, it is 
ranked highly in its suspiciousness. 

Such ideas shift the burden of lo-

calizing an observable error from pro-
grammer to computer. Techniques 
like delta debugging rely on explora-
tion or search over inputs or over the 
set of states in a trace to localize the 
cause of error. 

Note the debugging problem im-
plicitly contains search-based sub-
problems (such as the locations at 
which the program could be altered 
to avoid the observable error or which 
successful trace in the program you 
can choose to compare a given fail-
ing trace). These search problems 
in the debugging methods outlined 
earlier would be solved through vari-
ous search heuristics. In contrast, 
the symbolic analysis-based debug-
ging methods we present here solve 
these search problems by “solving 
logical formulae.” This new category 
of methods has emerged essentially 
out of an opportunity—the maturity 
and wide availability of satisfiability 
modulo theory (SMT) solvers.8 SMT 
formulae are in first-order logic, 
where certain symbols appearing in 
the formula come from background 
theories (such as theory of integers, 
real numbers, lists, bitvectors, and ar-
rays). Efficient solving of SMT formu-
lae allows us to logically reason about 

Figure 1. Running example buggy program. 

Table 1. Debugging using symbolic techniques. 

Name Symbolic Technique Information from

BugAssist13 Program Formula Internal inconsistency

Error Invariants10 Interpolants Internal inconsistency

Angelic Debugging5 Static Symbolic Execution Passing tests

Darwin22 Dynamic Symbolic Execution Previous version
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plication domains, programmers do 
not write down detailed specifications 
of the intended behavior of their code. 
Protocol specifications, even when 
available, are usually at a much higher 
level than the level of the implementa-
tion described here. In this particular 
case, when Test 2 fails, how does the 
programmer infer where the program 
execution turned incorrect? 

The execution trace of Test 2 is as 
follows 

0 hw _ set = 0; hw = NULL; ap = NULL;
1 while (i = getopt(....)) {
2	 switch (i) {
3 		  case 'A':
4 			   ap = getaftype(optarg);
5 			   hw _ set = 1;
6 			   break;
11 	 } // exit switch statement 
1 while (i = getopt(....)) {
12 } // exit while loop 
13 if (hw _ set == 0) 
{ // this condition is false 
16 assert(hw != NULL); 
// assertion fails 

So, when the assertion fails in line 
16, which line in the program does the 
programmer hold responsible for this 
observed error? Is it line 13, where the 
condition checked could have been 
different (such as hw set == 1)? If this 
was indeed the condition checked in 
line 13, Test 2 would not fail. Is it line 
5, where hw _ set is assigned? This 
is the line we hypothesized as the bug 
when we presented the buggy code to 
a human, but how does a computer-
aided debugging method know which 
line is the real culprit for the observed 
error, and can it be fixed? 

In general, for any observable error, 
there are several ways to fix a fault, and 
the definition of the fault often depends 
on how it is fixed. Since specifications 
are unavailable, have we thus reached 
the limit of what can be achieved in 
computer-assisted debugging? For-
tunately, it turns out some notion of 
intended behavior of the program can 
be recovered through indirect means 
(such as internal inconsistency of the 
failed trace, passing test cases, or an 
older working version of the same pro-
gram). In this article, we discuss debug-
ging methods that rely on such indirect 
program specifications to find the root 
cause of an observable error. 

Using Satisfiability 
The technique we discuss first is called 
“BugAssist”13 in which the input and 
desired output information from a fail-
ing test are encoded as constraints. 
These input-output constraints are then 
conjoined with the program formula, 
which encodes the operational seman-
tics of the program symbolically along 
all paths; see Figure 2 for an overview 
of conversion from a program to a for-
mula. In the example program of Figure 
1, we produce the following formula (φ): 

φ = arg[1] = A ∧ arg[2] = INET ∧ arg[3] 
= NULL 
	 ∧ hw_set0 = 0 ∧ hw0 = NULL ∧ ap0 = 
NULL 
	 ∧ i1 = arg[1] ∧ i1 ≠ NULL
	 ∧ guard3 = (i1 = = A) 
	 ∧ ap4 = arg[2] 
	 ∧ hw_set5 = 1 
	 ∧ ap11 = guard3 ? ap4 : ap0 
	 ∧ hw_set11 = guard3 ? hw_set5 : hw_set0 
	 ∧ i′1 = arg[3] ∧ i′1 = = NULL 
	 ∧ guard13 = (hw_set11 = = 0) 
	 ∧ hw14 = DEFAULT 
	 ∧ hw15 = guard13 ? hw14 : hw0 
	 ∧ hw15 ≠ NULL ∧ hw15 = = DEFAULT 

The arg elements refer to the input 
values, similar to argv of the C lan-
guage; here, the inputs are for Test 2. 
The last line of clauses represents the 
expectation of Test 2. The remainder 
of the formula represents the program 
logic. (For brevity, we have omitted the 
parts of the formula corresponding to 
the case 'H', as it does not matter for 
this input.) The variable i′1 refers to the 
second time the loop condition while 
is evaluated, at which point the loop 
exits. We use = to indicate assignment 
and == to indicate equality test in the 
program, though for the satisfiability of 
the formula both have the same mean-
ing. 

The formula φ, though lengthy, has 
one-to-one correspondence to the trace 
of Test 2 outlined earlier. Since the 
test input used corresponds to a failing 
test, the formula is unsatisfiable. 

The BugAssist tool tries to infer 
what went wrong by trying to make a 
large part of the formula satisfiable, 
accomplishing it through MAX-SAT19 
or MAX-SMT solvers. As the name sug-
gests, a MAX-SAT solver returns the 
largest possible satisfiable sub-formu-
la of a formula; the sub-formula omits 

Fortunately,  
it turns out  
some notion of 
intended behavior  
of the program 
can be recovered 
through  
indirect means. 
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straint corresponds to a good fix. Real-
izing this potential regression, the pro-
grammer using BugAssist would mark 
guard13 = (hw_set11 = = 0) as a hard con-
straint. Marking as a hard constraint 
indicates to the solver it should explore 
other lines in the program as possible 
causes of error. 

The MAX-SAT solver will then high-
light another (set of) constraints, say, 
hw_set5 = 1, meaning just this con-
straint can be omitted (or changed) to 
make the overall formula satisfiable. 
The reader can verify this forces guard13 
to be true. This corresponds to identi-
fying line 5 in Figure 1 as the place to be 
fixed. Here is the correct fix 

5: // hw _ set = 1; FIX: deleted line 

Interestingly, from the perspective of 
the satisfiability of the formula, chang-
ing the value assigned to hw _ set from 
1 to 0 is also a plausible but not robust 
fix, meaning it can fail other tests, as we 
show later in the article. 

The BugAssist technique tries to ex-
tract the reason for failure through analy-
sis of the error trace. Extraction is done 
iteratively, by successively finding mini-
mal portions of the formula, the omis-
sion or alteration of which can make the 
error trace formula satisfiable. In some 
sense, the complement of MAX-SAT re-
ported by BugAssist in repeated itera-
tions form legitimate explanations of the 
observed failure in the error trace being 
examined. As may be observed even from 
our simple example, the technique may 
report several potential faults. It is thus 
not so much as a one-shot fault-localiza-
tion method as it is an “iterative explora-
tion” of the potential locations where a 
change could avert the error in question. 
The iterative exploration is guided by the 
computation of the maximum satisfi-
able portion of an unsatisfiable formula 
that captures the program failure. 

Using Interpolants 
An alternative method, called “error 
invariants,”9 tries to find the reason for 
failure by examining error propagation 
in the different positions of the error 
trace. Identifying error root-cause is 
achieved by computing interpolant for-
mula at each position of the error trace. 
The notion of interpolant16 requires 
some explanation. Given a logical im-
plication X => Y involving first-order 

certain conjuncts of the original for-
mula. Moreover, the MAX-SAT solver is 
instructed that certain constraints are 
hard constraints, in that they cannot be 
omitted. Constraints on input and out-
put are typically hard. The solvers will 
find the maximum part of the formula, 
which is satisfiable, thereby suggesting 
the minimal portion of the program 
that needs to be changed to make the 
formula satisfiable. In this sense, the 
technique attempts to use internal in-
consistency to help a programmer, as 
an indirect source of specification. 

We now illustrate how BugAssist 
would work on the aforementioned for-
mula. We first mark the clauses related 
to args, as well as the final constraints on 
hw15 as hard. The MAX-SAT solver could 
first highlight the constraint guard13 = 

(hw_set11 = = 0) as the one to be omitted 
for making the rest of the formula satis-
fiable. The reader can verify that setting 
the (now) unbound variable guard13 to 
true will make hw15 equal to hw14, satis-
fying the output constraints. In terms of 
the program, this corresponds to an at-
tempt to fix the program at line 13 

13: if (hw _ set == 1) { // FIX: changed 
guard 

Even though this fix passes Test 2, 
it will fail previously passing tests like 
Test 1, thereby introducing regres-
sions. The fix is thus incorrect. How-
ever, BugAssist does not vet any of the 
code highlighted by the technique, 
relying instead on the programmer 
to assess whether the suggested con-

Figure 3. Using interpolants to analyze error traces. 
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Figure 2. Conversion of program to formula; the formula encodes, using guards, possible 
final valuations of variables. 

1 input y; // initially x = z = 0
2 if (y > 0){
3     z = y * 2;
4     x = y - 2;
5     x = x - 2; }
6 if (z == x)
7     output(“How did I get here”);
8 else if (z > x)
9     output(“Error”);

Here is the corresponding formula 

guard2 = (y > 0) 
∧ z3 = y  * 2  
∧ x4 = y - 2 
∧ x5 = x4 - 2
∧ z6 = guard2 ? z3 : 0  
∧ x6 = guard2 ? x5 : 0
∧ guard6 = (z6 == x6) 
∧ guard8 = (z6 > x6)
∧ output = guard6 ? How ... : (guard8 ? Error: nil)

In it, variables are given a subscript based on the line on which an instance is assigned.  
Guard variables denote conditions that regulate values of variables when potentially different  
values of a variable reach a branch point. For example, guard2 regulates the value of z6 based  
on whether the default initial value or the assignment to z3 reaches it. 
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logic formulae X and Y, an interpolant 
is a formula I satisfying 

X => I => Y 
The formula I is expressed through 

the common vocabulary of X and Y. 
Figure 3 outlines the use of interpo-
lants for analyzing error traces. The er-
ror trace formula is a logical conjunc-
tion of the input valuation, the effect of 
each program statement on the trace, 
and the expectation about output. 

Given any position p in the trace, if 
we denote the formula from locations 
prior to p as X, and the formula from lo-
cations in the trace after p as Y, clearly X 
∧ Y is false. Thus ¬(X ∧ Y) holds, meaning 
¬X ∨ ¬Y holds, meaning X => ¬Y holds. 
The interpolant Ip at position p in the er-
ror trace will thus satisfy X => Ip => ¬Y. 
Such an interpolant can be computed 
at every position p in the error trace for 
understanding the reason behind the 
observable error. 

Let us now understand the role of 
interpolants in software debugging. 
We first work out our simple example, 
then conceptualize use of the logical 
formula captured by interpolant in 
explaining software errors. In our run-
ning example, the interpolants at the 
different positions are listed in Table 
2, including interpolant formula after 
each statement. Note there are many 
choices of interpolants at any posi-
tion in the trace, and we have shown 
the weakest interpolant in this simple 
example. The trace here again corre-
sponds to the failing execution of Test 
2 on the program in Figure 1, and we 
used the same statements earlier in 
this article on BugAssist. 

What role do interpolants play in ex-
plaining an error trace? To answer, we 
examine the sequence of interpolants 
computed for the error trace in our 
simple example program, looking at 
the second column in Table 2 and con-
sidering only non-repeated formulae: 

arg[1] = A 
arg[1] = A ∧ hw0 = NULL 
i1 = A ∧ hw0 = NULL 
guard3 = true ∧ hw0 = NULL 
guard3 = true ∧ hw0 = NULL ∧ hw_set5 
= 1 
hw0 = NULL ∧ hw_set11 = 1 
hw0 = NULL ∧ guard13 = false 
hw15 = NULL 

The sequence of interpolants here 

the internal inconsistency of the faulty 
execution to figure out possible causes 
of error. Note, choosing interpolants 
must be done with care—as interpo-
lants in general are not unique—for the 
method to be effective in filtering away 
irrelevant statements.6,9 Furthermore, 
the scalability of these methods is a 
concern today due to the huge length 
of real-life traces and the slowness of 
interpolating provers.16 

Using Passing Tests 
Another technique, called “Angelic De-
bugging”5 first proposed in 2011, ex-
plores the relationship between fault 
localization and fix localization rather 
closely, following the philosophy of de-
fining a possible fault in terms of how it 
is fixed. In it, we explore the set of poten-
tial repairs that will make an observable 
error disappear. Since the landscape 
of syntactic repairs to try out is so vast, 
the technique finds, via symbolic execu-
tion and constraint solving, a value that 
makes the failing tests pass while con-
tinuing to pass the passing tests. Cru-
cially, the technique utilizes the infor-
mation contained in the passing tests 
to help identify fix locations. The tech-
nique proceeds in two steps. In the first, 
it attempts to find all the expressions 
in the program that are candidates for 
a fix; that is, a change made in that ex-
pression can possibly fix the program. 
The second step rules out those fix loca-

shows the propagation of the error via 
the sequence of variables arg[1], hw0, 
i1, and so on. Propagation through 
both data and control dependence is 
tracked. Propagation through data de-
pendence corresponds to an incorrect 
value being passed from one variable 
to another through assignment state-
ments. Propagation through control 
dependence corresponds to an incor-
rect valuation of the guard variables, 
leading to an incorrect set of state-
ments being executed. Both types of 
propagation are captured in the inter-
polant sequence computed over the 
failed trace. The interpolant at a posi-
tion p in the error trace captures the 
“cause” for failure expressed in terms 
of variables that are live at p. Comput-
ing the interpolant at all locations of 
the error trace allows the developer to 
observe the error-propagation chain. 

The other important observation to 
make is program statements that do not 
alter the interpolant are irrelevant to 
the explanation of the error. In Table 2, 
statements marked with a • are not rel-
evant to explaining the failure of Test 
2. For example, anything relevant only 
to the computation of ap is ignored, 
an approach similar to backward dy-
namic slicing, though an interpolation-
based technique is more general than 
dynamic slicing. The remaining state-
ments form a minimal error explana-
tion. Once again, the technique uses 

Table 2. Interpolant computation at each statement; the statements marked with • have 
the property that they do not alter the interpolant. 

Statement Interpolant after statement 

arg[1] = A arg[1] = A

arg[2] = INET • arg[1] = A

arg[3] = NULL  • arg[1] = A

hw_set0  = 0  • arg[1] = A

hw0 = NULL arg[1] = A ∧ hw0 = NULL

ap0 = NULL  • arg[1] = A ∧ hw0 = NULL

i1 = arg[1] i1 = A ∧ hw0 = NULL
guard3 = (i1 == A) guard3 = true  ∧ hw0 = NULL

ap4 = arg[2]  • guard3 = true  ∧ hw0 = NULL

hw_set5 = 1 guard3 = true  ∧ hw0 = NULL ∧ hw_set5 = 1

ap11 = guard3 ? ap4 : ap0  • guard3 = true  ∧ hw0 = NULL ∧ hw_set5 = 1

hw_set11 = guard3 ? hw_set5 : hw_set0  hw0 = NULL ∧ hw_set11 = 1

i’1 = arg[3]  • hw0 = NULL ∧ hw_set11 = 1

guard13 = (hw_set11 ==  0) hw0 = NULL ∧ guard13 = false

hw14 =  DEFAULT  • hw0 = NULL ∧ guard13 = false

hw15 = guard13 ? hw14 : hw0 hw15 =  NULL

hw15 ≠ NULL false
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ic, we can find a plausible successful 
execution of the program 

13: if (!!) { 

We omit the formulae, but they are 
similar to ones shown earlier in this 
article. 

We now show the second step of the 
method. It rules out those fix locations 
for which changing the expression 
would make previously passing tests 
fail. Given a candidate fix location, it 
asks the following question for each 
of the passing inputs: Considering 
the proposed fix location a hole (!!), is 
there a way for the angel to provide a 
value for the hole that is different from 
the value observed at that location in 
normal execution on that input? If it 
is possible, then the fix location is a 
plausible fix location. The technique 
provides the angelic values by using 
symbolic execution. 

First we consider the fix location of 
line 5, right-hand side. For Test 1, the 
hole in the fix location (line 5 of Figure 
1) will be replaced by α, and α ≠ 1 added 
to the constraint, to represent differ-
ence from the value observed here in 
normal execution. More formally, the 
symbolic environment at line 5 will be 

e5 = [hw0 = NULL, i = A, ap = INET, hw_
set = α; α ≠ 1] 

From here on, symbolic execution will 
find a path that succeeds. Likewise, for 
Test 2 and Test 3. The passing tests 
thus accept the proposed fix location as 
a plausible one. 

Now consider the fix location of line 
13, where we want the branch to have a 
different outcome. For Test 1, the en-
vironment at line 13 will be 

e13 = [hw8 = ETHER, hw_set = 1, …, 
guard13 = α; α ≠ false] 

There is no successful execution given 
this environment. Test 1 therefore 
rules out line 13 as a plausible fix loca-
tion, deeming no syntactic variation of 
the condition is likely to fix the program. 

Although the technique determines 
plausible fix locations and not fixes 
themselves, going from a fix location to 
a fix is not straightforward. Consider a 
candidate syntactic fix a human could 
provide for line 5. For example, using the 

tions for which changing the expression 
would make previously passing tests 
fail. It does so without knowing any pro-
posed candidate fix, again because the 
landscape of syntactic fixes is so vast; 
rather, it works on just the basis of a 
candidate fix “location.” 

Consider again the failing execu-
tion of Test 2 on the program in Fig-
ure 1. We illustrate how the technique 
works, focusing first on statement 5. 
The technique conceptually replaces 
the right-hand-side expression by a 
“hole” denoted by !!, meaning an as-
yet-unknown expression 

5: hw_set = !! 

The interpretation of !! is that an an-
gel would supply a suitable value for it 
if it is possible to make the execution 
go to completion, hence the name of 
the technique. The angel is simulated 
by a symbolic execution tree (see Fig-
ure 4 for details on how to compute a 
symbolic execution tree), looking for 
a path along which the path formula 
is satisfiable. In our running example, 
the symbolic execution comes up with 
the following environment when going 
through the true branch at line 13 and 
expecting a successful termination 

e13T = [hw0 = NULL, i = A, ap = INET , 
hw_set = α 
	 guard13 = true, hw14 = DEFAULT 
	 hw15 = DEFAULT; 
	 α = 0 ∧ hw15 ≠ NULL ∧ hw15 = = 
DEFAULT] 

and the following when going through 
the false branch 

e13F = [hw0 = NULL, i = A, ap = INET, 
hw_set = α  
	 guard13 = false, hw15 = NULL; 
	 α ≠ 0 ∧ hw15 ≠ NULL ∧ hw15 = = 
DEFAULT] 

α represents the angelic value assigned 
at line 5. Recall we carried out concrete 
execution up to statement 5, with the 
same input as shown in formula φ earlier. 

e13T has a satisfiable condition when 
α is 0, whereas e13F is not satisfiable due 
to the conflict on the value of hw15. The 
execution can thus be correct in case 
the guard at line 13 evaluates to true. 

Focusing next on statement 13, we 
find making the condition itself angel-

The scalability of 
symbolic analysis-
based debugging 
methods crucially 
depends on the 
scalability of SMT 
constraint solving.
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following fix at line 5 works for tests 1–3 

5: hw_set = 0 

The astute reader will notice this par-
ticular fix is not an ideal fix. Given 
another test 

Test 4:	 arp H ETHER A INET 
	 Expected output: ETHER 
	 Actual output: DEFAULT 

This test will fail with the proposed 
fix, even though the location of the fix 
is the correct one. The correct fix is to 
eliminate the effect of line 5 altogether 

5: hw_set = hw_set; // or delete the 
statement 

The example reflects the limitations 
in attempting to fix a program when 
working with an incomplete notion of 
“specification.” 

Using Other Implementations 
Programs are usually not written from 
scratch; rather, versions of a program 
are gradually checked in. When we 
introduce changes into a previously 
working version (where we say the ver-
sion is “working,” since all test cases 
pass), certain passing tests may thus 
fail. To debug the cause of the observed 
failure in such a failed test t, we can 
treat the behavior of t in the previous 
working version as a description of the 
programmer’s intention. 

The technique presented in Qi et 
al.,22 called “Darwin,” developed in 
2009, executes the failing test t in the 
previous program version P, as well 
as the current program version P′. It 
then calculates the path conditions of 
t in both program versions along the 
execution trace of t in both program 
versions; see Figure 5 for explanation 
of how such path conditions are com-
puted. Calculating path conditions 
leads to path conditions f and f′. One 
can then solve the formula f ∧ ¬f′ to 
find test input t′ that follows the same 
path as t in the previous program ver-
sion and a different path in the current 
program version. The execution of t′ 
in the current program version P′ can 
then be compared with the execution 
of the failing test t in current version P′ 
in terms of differences in their control 
flow. That is, the behavior of t′ in cur-

  Figure 4. Symbolic execution tree. 

Consider again the code fragment in Figure 2. Suppose input y is a symbolic input, with an unknown 
value of, say, α. In symbolic execution,14 the store maps variables that may be concrete values or 
symbolic expressions. At an assignment, the store is updated with the evaluation of right-hand-side 
expression, which may be a symbolic expression. At a branch, if the decision involves a symbolic 
expression, both sides of the branch are executed in separate “threads,” with corresponding branch 
conditions taken into account. 

At line 2, two threads of symbolic execution will be created. In the first, the environment e2T is [x = 
0, z = 0, y = α;α > 0], and the other, e2F, is [x = 0, z = 0, y = α;α ≤ 0]; note we included the conditions 
encountered on the path thus far in the environment. These conditions appear following the semicolon 
(see also Figure 5.). Here is the symbolic execution tree for Figure 2 

x	
  =	
  0,	
  z	
  =	
  0,	
  y	
  =	
  α;	
  	
  

x	
  =	
  0,	
  z	
  =	
  0,	
  y	
  =	
  α;	
  
α	
  >	
  0	
  

	
  y	
  >	
  0	
  

x	
  =	
  0,	
  z	
  =	
  0,	
  y	
  =	
  α;	
  
α	
  ≤	
  0	
  

	
  ¬(y	
  >	
  0)	
  

x	
  =	
  0,	
  z	
  =	
  2α,	
  y	
  =	
  α;	
  
α	
  >	
  0	
  

z=y*2	
  

x	
  =	
  α-­‐2,	
  z	
  =	
  2α,	
  y	
  =	
  
α;	
  α	
  >	
  0	
  

x=y-­‐2	
  

x	
  =	
  α-­‐4,	
  z	
  =	
  2α,	
  y	
  =	
  α;	
  
α	
  >	
  0	
  

x=x-­‐2	
  

x	
  =	
  0,	
  z	
  =	
  0,	
  y	
  =	
  α;	
  
α	
  ≤	
  0	
  

z==	
  x	
  

x	
  =	
  α-­‐4,	
  z	
  =	
  2α,	
  y	
  =	
  α;	
  
α	
  >	
  0	
  ∧	
  2α	
  ==	
  α-­‐4	
  

	
  z	
  ==x	
  

x	
  =	
  α-­‐4,	
  z	
  =	
  2α,	
  y	
  =	
  α;	
  
α	
  >	
  0∧	
  2α	
  !=	
  α-­‐4	
  

	
  z	
  !=	
  x	
  

e2T	
   e2F	
  

e2T,6T	
   e2T,6F	
  

…	
  

…	
  

e2F,6T	
  

…	
  

At line 6, e2T forks into: e2T,6T and e2T,6F. e2T,6T will be [x = α – 4, z = α * 2, y = α;α > 0 ∧ α – 4 = α * 2],  
which will be discarded since the condition is unsatisfiable. 

Symbolic execution tree construction is similar to the program formula construction in Figure 2. For this 
reason, it is also called “static symbolic execution.” The difference is, in program formula, threads were 
merged with control-flow join points, whereas in symbolic execution tree, there is no merging. 

Figure 5. Illustration of path conditions. 

Consider yet again the program in Figure 2. Suppose we want to find the path condition of the only 
way to reach the error statement, or the path 〈1, 2, 3, 4, 5, 6, 8, 9〉. We traverse forward along the 
sequence of statements in the given path, starting with a null formula and gradually build it up. All 
variables start with symbolic values. At any point during the traversal of the trace, we maintain an 
assignment store and a logical formula. The result is 

˲˲ For every assignment, we update the symbolic assignment store; and 
˲˲ For every branch, we conjoin the branch condition—or its converse if the branch is not taken—

with the path condition; while doing so, we use the symbolic assignment store for every variable 
appearing in the branch condition. 

At the end of the path, the logical formula captures the path condition. For the example path  
〈1, 2, 3, 4, 5, 6, 8, 9〉 in the given program, the path condition can be calculated as shown in  
the table here. Whenever the input satisfies y > 0∧2y ≠ y – 4∧2y > y – 4, the program execution  
will trace exactly this path. 

Assignment store

1
2
3
4
5
6
8
9

Logical Formula

Note this form of symbolic execution is similar to the one in Figure 4; the difference is one path 
is already given here, so there is no execution tree to be explored. This is sometimes also called 
“dynamic symbolic execution.” 
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is satisfiable because arg[2] = NULL is 
satisfiable, pointing to the condition 
being misplaced in the code. This 
is indeed where the bug lurks. Even 
though the entire coding style and the 
control flow in the buggy implemen-
tation was quite different from the 
reference implementation, the de-
bugging method is thus able to ignore 
the differences in coding style in the 
buggy implementation. Note arg[2] 
= NULL is contributed by the branch 
condition ap != NULL, a correlation 
an automated debugging method can 
keep track of. The method thus natu-
rally zooms into the misplaced check 
ap != NULL through a computation 
of satisfiability of the deviations of 
the failing test’s path condition. 

One may question the choice of 
considering the past version as a 
specification of what the program is 
supposed to achieve, a question that 
arises because the software require-
ments of an earlier program version 
may differ from the requirements of 
the current program version. How-
ever, the comparison works as long as 
the program features are common to 
both versions and the requirements 
are unchanged. 

Perspectives 
We have explored symbolic execution 
and constraint solving for software de-
bugging. We conclude by discussing 
scalability and applicability of the pre-
sented techniques, along with possible 
future research directions. 

Scalability and applicability. The 
scalability of the techniques de-
scribed here need greater investiga-
tion. Due to the semantic nature of the 
analysis, symbolic execution-based 
debugging of regression errors22 has 
been adapted to multiple settings of 
regression, resulting in wide applica-
bility, including regressions in a pro-
gram version as opposed to previous 
version; regression in an embedded 
software (such as Linux Busybox) as 
opposed to reference software (such 
as GNU Coreutils);3 and regression 
in a protocol implementation (such 
as miniweb Web server implement-
ing the http protocol) as opposed to 
a reference implementation of the 
protocol, as in the Apache Web serv-
er. In these large-scale applications, 
the symbolic analysis-based regres-

rent program P′ is taken as the “speci-
fication” against which the behavior of 
the failing test t is compared for differ-
ence in control flow. 

Such methods are based on se-
mantic analysis, rather than a com-
pletely syntactic analysis of differ-
ences across program versions (such 
as running a diff between program 
versions). Being based on semantic 
analysis these debugging methods 
can analyze two versions with sub-
stantially different implementations 
and locate causes of error. 

To illustrate this point, consider 
the fixed Address Resolution Proto-
col (ARP) implementation—Figure 
1 with line 5 deleted—we discussed 
earlier as the reference version. This 
program will pass the test Test 2. 
Now assume a buggy program imple-
mentation with a substantially differ-
ent programming style but with in-
tention to accomplish the same ARP 
(see Figure 6). The test Test 2 fails in 
this implementation 

Test 2: 
	 arp A INET (failing test). 
	 Expected output: DEFAULT 
	 Observed output: INET 

First of all, a simple diff of the 
program versions cannot help since 
almost the entire program will ap-
pear in the diff. A careful com-
parison of the two implementations 
shows the logic of the protocol the 
programmer would want to imple-
ment has been mangled in this imple-
mentation. The computation of get 
hwtype(DEFAULT) has been (cor-
rectly) moved. However, the compu-

tation of get _ hwtype(optarg)a 
is executed under an incorrect condi-
tion, leading to the failure in the test 
execution. A redundant check ap != 
NULL has slipped into line 8. 

We now step through the localiza-
tion of the error. For the test arp A 
INET the path condition in the refer-
ence version is (since i is set to arg[1]) 
as follows 

f ≡ arg[1] = A 

The path condition in the buggy imple-
mentation is as follows (since i is set to 
arg[1] and ap is set to arg[2] (via optarg) 

f ′ ≡ arg[1] = A ∧ (arg[2] ≠ NULL ∨ arg[1] = H) 

The negation of f ′ is the following dis-
junction 

¬f ′ ≡ arg[1] ≠ A ∨ ¬(arg[2] ≠ NULL ∨ arg[1] = H) 

f ∧ ¬f ′ thus has two possibilities to 
consider, one for each disjunct in ¬f ′ 

1.	arg[1] = A	 ∧	 arg[1] ≠ A 
2.	arg[1] = A	 ∧	 ¬(arg[2] ≠ NULL ∨ 
arg[1] = H) 

The first formula is not satisfiable, and 
the second one simplifies to 

arg[1] = A ∧ arg[2] = NULL ∧ arg[1] ≠ H 

A satisfying assignment to this second 
formula is an input that shows the es-
sential control-flow path deviation—
in the defective program—from the 
failure-inducing input. This formula 

a	 Assume get hwtype(INET) returns INET.

Figure 6. Assume line 5 in Figure 1 was removed yielding the correct program for the code 
fragment; here we show a different implementation of the same code. 
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sion debugging methods of Banerjee 
et al.3 and Qi et al.22 localized the er-
ror to within 10 lines of code in fewer 
than 10 minutes. 

Among the techniques covered 
here, the regression-debugging 
methods3,22 have shown the great-
est scalability, with the other tech-
niques being employed on small-to-
moderate-scale programs. Moreover, 
the scalability of symbolic analysis-
based debugging methods crucially 
depends on the scalability of SMT 
constraint solving.8 Compared to sta-
tistical fault-localization techniques, 
which are easily implemented, sym-
bolic execution-based debugging 
methods still involve more imple-
mentation effort, as well as greater 
execution time overheads. While we 
see much promise due to the growth 
in SMT solver technology, as partly 
evidenced by the scalability of the 
regression-debugging methods, 
more research is needed in symbolic 
analysis and SMT constraint solving 
to enhance the scalability and appli-
cability of these methods. 

Note for all of the presented de-
bugging methods, professional 
programmers need user studies to 
measure programmer productivity 
gain that might be realized through 
these methods. Parnin and Orso21 
highlighted the importance of user 
studies in evaluating debugging 
methods. The need for user studies 
may be even more acute for methods 
like BugAssist that provide an itera-
tive exploration of the possible error 
causes, instead of providing a final 
set of diagnostic information captur-
ing the lines likely to be the causes of 
errors. Finally, for the interpolant-
based debugging method, the issue 
of choosing suitable interpolants 
needs further study, a topic being in-
vestigated today (such as by Albargh-
outhi and McMillan2). 

Other directions. Related to our 
topic of using symbolic execution for 
software debugging, we wish to say 
symbolic execution can also be useful 
for “bug reproduction,” as shown by 
Jin and Orso.11 The bug-reproduction 
problem is different from both test 
generation and test explanation. Here, 
some hints may be reported about the 
failing execution by on-the-field users 
in the form of a crash report, and these 
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hints can be combined through sym-
bolic execution to construct a failing 
execution trace. 

Finally, the software-engineer-
ing community has shown much 
interest in building semiautomat-
ed methods for program repair. It 
would be interesting to see how sym-
bolic execution-based debugging 
methods can help develop program-
repair techniques. The research 
community is already witnessing de-
velopment of novel program-repair 
methods based on symbolic execu-
tion and program synthesis.17,18,20 
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